Silicon is the most promising electrode material for next-generation lithium-ion batteries
The roble had hit a record low after the West imposed sweeping sanctions on Russia for its aggression in Ukraine. Russia's president recently ordered exports of Russian gas to "unfriendly" countries to be settled in robles. The speaker of Russia's upper house of parliament said Moscow was prepared and could shift supplies to markets such as Asia if Europe refused to buy Russian energy.
European countries, which pay mostly in euros, say Russia has no right to reset contracts. The G7 rejected Russia's demand and urged companies not to agree to pay in robles, saying most contracts stipulated payment in euros or dollars. Wholesale gas prices in Europe have risen further recently on concerns about potential supply disruptions.
The Kremlin spokesman said, "According to the March 31 deadline set by Russia's president, we are developing all payment methods to get a simple, understandable, and feasible system for relevant European and international buyers,"
The markets and prices of more commodities like the Nano silicon anode material silicon powder would be affected because of the volatile international political situations.
Overview of nano silicon anode material silicon powder
Silicon is the most promising electrode material for next-generation lithium-ion batteries, with a specific capacity (3600 mAh/g) about 10 times higher than graphite (372 mAh/g). However, due to the significant expansion (over 300%) of the material under load (lithiation) and the instability of the solid electrolyte interface layer (SEI), its use is severely restricted. The poor mechanical stability and chemical passivation performance of silicon electrodes make the cycle performance of silicon electrodes far unable to meet the requirements of battery systems, and a lot of research and suggestions have been stimulated to circumvent these limitations.

During the lithium insertion process, the volume of silicon changes so much (about 400%) that the silicon cracks and falls off the collector, causing the prototype lithium-silicon battery to lose most of its capacity in less than 10 charge and discharge cycles. The key to the success of large-capacity lithium-ion batteries is to solve the capacity and stability problems of lithium-ion silicon.
Silicon anode materials have shown great potential in improving the efficiency and energy storage capacity of lithium-ion batteries. Until recently, their main disadvantage was surface passivation through oxidation, a process that increases impedance and reduces anode circularity. Our high-purity silicon anode materials can achieve high specific capacity without significantly affecting cycle life.
Nano silicon anode material silicon powder application
Silicon is the most promising anode material in the next generation of lithium-ion batteries. Nano silicon anode materials are used in cylindrical, flexible and aluminum shell batteries. Our silicon anode powder can be dispersed in the battery solvent while preventing agglomeration. They are designed to bond seamlessly with other battery materials and produce uniform and stable coatings. Therefore, they are suitable for a range of applications, including lithium-ion batteries, photovoltaics, semiconductors, and electronics.
Nano silicon anode material silicon powder price
The price of nano-silicon anode material silicon powder product varies randomly with factors such as production cost, transportation cost, international situation, exchange rate, and supply and demand of nano-silicon anode material silicon powder market. Tanki New Materials Co.,Ltd. aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full set of customized services. If you are looking for nano silicon anode material silicon powder product materials, please feel free to contact to obtain the latest price of nano-silicon anode material silicon powder products.
Supplier of nano silicon anode material silicon powder
As a global supplier of nano silicon anode material silicon powder, Tanki New Materials Co.,Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineering materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics and structural devices, and provides OEM services.
Silicon Si powder Properties |
Other Names | Silicon Si powder, Si, Si powder, nano silicon powder |
CAS No. | 7440-21-3 |
Compound Formula | Si |
Molecular Weight | 28.08 g/mol |
Appearance | brown, or silvery |
Melting Point | 1414°C |
Boiling Point | 2900°C |
Density | 2330kg/cm3 |
Purity | >99.95% |
Electrical Resistivity | 3-4 microhm-cm @ 0 °C |
Poisson's Ratio | 0.064 - 0.28 |
Specific Heat | 0.168 Cal/g/K @ 25 °C |
Thermal Conductivity | 1.49 W/cm/K @ 298.2 K |
Thermal Expansion | (25 °C) 2.6 µm·m-1·K-1 |
Young's Modulus | 51-80 GPa |
Exact Mass | N/A |
Monoisotopic Mass | N/A |
Silicon Si powder Health & Safety Information |
Safety Warning | Warning |
Hazard Statements | H315-H319-H335 |
Hazard Codes | H228 |
Risk Codes | 11 |
Safety Statements | 16-33-36 |
RTECS Number | VW0400000 |
Transport Information | UN 1346 4.1/PG 3 |
WGK Germany | 2 |
Europe has been facing the gas shortage problem since the second half of 2021. The worsening situation in Russia and Ukraine has reduced Russian gas shipments to Europe, leading to a doubling of European gas prices. Energy shortages have sent electricity prices soaring. For these reasons, it is predicted that the price of the Nano silicon anode material silicon powder will continue to increase.
Inquiry us